35 research outputs found

    Protection of Active Distribution Networks and Their Cyber Physical Infrastructure

    Get PDF
    Today’s Smart Grid constitutes several smaller interconnected microgrids. However, the integration of converter-interfaced distributed generation (DG) in microgrids has raised several issues such as the fact that fault currents in these systems in islanded mode are way less than those in grid connected microgrids. Therefore, microgrid protection schemes require a fast, reliable and robust communication system, with backup, to automatically adjust relay settings for the appropriate current levels according to the microgrid’s operation mode. However, risks of communication link failures, cyber security threats and the high cost involved to avoid them are major challenges for the implementation of an economic adaptive protection scheme. This dissertation proposes an adaptive protection scheme for AC microgrids which is capable of surviving communication failures. The contribution is the use of an energy storage system as the main contributor to fault currents in the microgrid’s islanded mode when the communication link fails to detect the shift to the islanded mode. The design of an autonomous control algorithm for the energy storage’s AC/DC converter capable of operating when the microgrid is in both grid-connected and islanded mode. Utilizing a single mode of operation for the converter will eliminate the reliance on communicated control command signals to shift the controller between different modes. Also, the ability of the overall system to keep stable voltage and frequency levels during extreme cases such as the occurrence of a fault during a peak pulse load period. The results of the proposed protection scheme showed that the energy storage -inverter system is able to contribute enough fault current for a sufficient duration to cause the system protection devices to clear the fault in the event of communication loss. The proposed method was investigated under different fault types and showed excellent results of the proposed protection scheme. In addition, it was demonstrated in a case study that, whenever possible, the temporary disconnection of the pulse load during the fault period will allow the utilization of smaller energy storage device capacity to feed fault currents and thus reduce the overall expenditures. Also, in this dissertation we proposed a hybrid hardware-software co-simulation platform capable of modeling the relation between the cyber and physical parts to provide a protection scheme for the microgrid. The microgrid was simulated on MATLAB/Simulink SimPowerSystems to model the physical system dynamics, whereas all control logic was implemented on embedded microcontrollers communicating over a real network. This work suggested a protection methodology utilizing contemporary communication technologies between multi-agents to protect the microgrid

    Iec 61850-based communication networks of distribution system against cyber and physical failures

    Get PDF
    This paper proposes a decentralized control approach using a co-simulation platform to monitor protective elements and provide complete protection scheme for distribution systems. Real time measurements are obtained by interfacing the system model in RSCAD/RTDS with SEL 421 protective relays and publish/subscribe the voltage and current signals of the buses and transmission lines based on IEC 61850 communication protocol to isolate the fault correctly. The proposed technique helps to identify the location of the fault and introduces primary and buck protection for the system. The communication networks assists in facing cyber and physical threats and finding a new path for healthy relays to remove faults from the system. This technique is investigated on an IEEE 14 bus system for all possible fault locations. The proposed scheme can clear the fault by isolating the minimum part of the system and improving the endurance of the power in it. The system shows the smooth information flow between the cyber and physical parts to isolate faults in it in different cases

    Optimal power routing scheme between and within interlinking converters in unbalanced hybrid AC–DC microgrids

    Get PDF
    An optimal power routing (OPR) scheme between and within interlinking converters (ICs) in unbalanced hybrid AC–DC microgrids to minimise the power imbalance factor at the point of common coupling, active power losses, and voltage deviation indices for microgrids in grid-connected operating mode is proposed in this study. These goals are achieved through a multi-objective optimisation model by optimal distributing of mobile loads between available charging stations and at the same time, OPR within three phases of three-phase four-lag AC/DC converters. Numerical results obtained from implementing the proposed method on the modified IEEE 13-bus system, as an unbalanced hybrid microgrid, and IEEE 34-bus test system, as an unbalanced distribution system, demonstrate that proposed OPR algorithm is successful to satisfy the optimisation goals. For this purpose, four case studies are defined and studied to demonstrate the unique features of the proposed OPR comparing with other power routing schemes. In addition to simulation results, the OPR scheme between ICs is realistically implemented at Florida International University smart grid testbed to show the effect of the power routing on energy losses reduction

    The IEC 61850 sampled measured values protocol: Analysis, threat identification, and feasibility of using NN forecasters to detect spoofed packets \u3csup\u3e†\u3c/sup\u3e

    Get PDF
    The operation of the smart grid is anticipated to rely profoundly on distributed microprocessor-based control. Therefore, interoperability standards are needed to address the heterogeneous nature of the smart grid data. Since the IEC 61850 emerged as a wide-spread interoperability standard widely accepted by the industry, the Sampled Measured Values method has been used to communicate digitized voltage and current measurements. Realizing that current and voltage measurements (i.e., feedback measurements) are necessary for reliable and secure noperation of the power grid, firstly, this manuscript provides a detailed analysis of the Sampled Measured Values protocol emphasizing its advantages, then, it identifies vulnerabilities in this protocol and explains the cyber threats associated to these vulnerabilities. Secondly, current efforts to mitigate these vulnerabilities are outlined and the feasibility of using neural network forecasters to detect spoofed sampled values is investigated. It was shown that although such forecasters have high spoofed data detection accuracy, they are prone to the accumulation of forecasting error. Accordingly, this paper also proposes an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed methods is experimentally verified in a laboratory-scale smart grid testbed

    A framework for analyzing and testing cyber-physical interactions for smart grid applications

    Get PDF
    The reliable performance of the smart grid is a function of the configuration and cyber- physical nature of its constituting sub-systems. Therefore, the ability to capture the interactions between its cyber and physical domains is necessary to understand the effect that each one has on the other. As such, the work in this paper presents a co-simulation platform that formalizes the understanding of cyber information flow and the dynamic behavior of physical systems, and captures the interactions between them in smart grid applications. Power system simulation software packages, embedded microcontrollers, and a real communication infrastructure are combined together to provide a cohesive smart grid cyber-physical platform. A data-centric communication scheme, with automatic network discovery, was selected to provide an interoperability layer between multi-vendor devices and software packages, and to bridge different protocols. The effectiveness of the proposed framework was verified in three case studies: (1) hierarchical control of electric vehicles charging in microgrids, (2) International Electrotechnical Committee (IEC) 61850 protocol emulation for protection of active distribution networks, and (3) resiliency enhancement against fake data injection attacks. The results showed that the cosimulation platform provided a high-fidelity design, analysis, and testing environment for cyber information flow and their effect on the physical operation of the smart grid, as they were experimentally verified, down to the packet, over a real communication network

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The Effect of Upright Posture on Endothelial Function in Women and Men

    Get PDF
    We investigated flow-mediated dilation (FMD) and reactive hyperemia peripheral arterial tonometry (RH-PAT) responses during the supine and 70 head-up tilt postures to assess vascular function in young healthy women and men. During the FMD protocol: 1) FMD increased in both sexes during tilt (P=0.005), 2) women had higher shear stress responses in both postures vs. men (P=0.03), 3) at the time of maximal vasodilation during tilt, both sexes had lower mean arterial pressure responses (MAP; P=0.02) compared to supine. During the RH-PAT protocol: 1) at all timepoints men had greater RH-PAT in comparison to women (P=0.035), 2) both sexes had similar arterial stiffness in both postures (P>0.05), and 3) at the time of maximal vasodilation, both sexes showed similar MAP responses across both postures (P>0.05). We suggest that the increased vasodilatory response as measured by FMD in the tilt posture could be attributed to increasing metabolite production from postural muscles

    Text categorization based on phrase indexing

    No full text

    Performance Evaluation of Electric Vehicle Model under Skid Control Technique

    No full text
    The rapid development of skid control safety applications in Electric Vehicles and modern vehicles calls for a more detailed assessment of the application-related design parameters. One of the main significant parameters in the design of such applications is the skid number threshold. The tire-road skid number is one of the most important variables that influences the sliding control system in modern vehicles. Most of the available studies in the academic literature have focused on testing the sliding mode controller based on estimating the driving forces of vehicles. However, the design of skid control application based on the pavement surface skid conditions is yet to be investigated. In order to fill the gap, this paper proposes a set of British Pendulum Numbers (BPN) for roadway surface treatments under two different weather conditions to enhance the design of the skid control application. The study results concluded that it is critical to accommodate for the lowest skid numbers range between BPN 22.63 and 31.94 for the sand treatment under snow pavement surface and the fog treatment under dry pavement surface, respectively. The results of this study can be beneficial to the automotive industry and transportation agencies when deciding to fine-tune the parameters of the skid control applications in modern vehicle technologies
    corecore